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Abstract
The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential 
chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering 
several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of 
chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve 
as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, 
and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. 
This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP 
development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of 
this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges 
to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also 
offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification 
of data available at a time t, or the identification of “data gaps”. Finally, this article proposes a step forward with suggested 
priority topics in ecotoxicology that could benefit from this strategy.
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Abbreviations
AO	� Adverse Outcome
AOP	� Adverse Outcome Pathway
AOP-KB	� AOP knowledgebase
AOPN	� Adverse Outcome Pathway Network
BPR	� Biocide Product Regulation
FASSET	� Framework for ASSessment of Environmental 

impacT
ECHA	� European CHemicals Agency
IATA​	� Integrated Approaches to Testing and 

Assessment
KE	� Key Event
KER	� Key Event Relationship
MoA	� Modes of Action
MIE	� Molecular Initiating Event
NAMs	� New Approach Methodologies
OECD	� Organization for Economic Co-operation and 

Development
qAOP	� quantitative AOP
PARC 	� Partnership for the Assessment of Risks from 

Chemicals
PBPK-TD	� Physiologically Based Kinetic and Dynamic
QSAR	� Quantitative Structure Activity Relationship
REACH	� Registration, Evaluation, Authorisation and 

Restriction of CHemicals
WoE	� Weight of Evidence

Context and objectives

The adverse outcome pathway (AOP) has been conceptual-
ized in ecotoxicology in 2010 by Ankley and Villeneuve 
from the US EPA (Ankley et al. 2010) as an analytical con-
struct to describe a sequential chain of causal links between 
key events (KE), from a molecular initiating event (MIE) 
leading to an adverse effect, considering several levels of 
biological organization. It was initially proposed for uses 
in ecotoxicology. The use of this conceptual framework 
was then extended to the field of toxicology in which it has 
proven its relevance as well as its efficiency to help in fine 
deciphering and underlying mechanisms at each level of bio-
logical organization. Recent research in toxicology, based 
on integrative system biology and artificial intelligence, 
gave it a new dimension. To initiate discussion and a more 
effective knowledge transfer from toxicology to ecotoxicol-
ogy, the evertéa Foundation (https://​fonda​tione​vertea.​org/; 
ex. Rovaltain Foundation), a French non-profit organization 
in the field of health and environment, and more precisely 
environmental toxicology and ecotoxicology, organized a 
workshop on AOP and new in silico perspectives in ecotoxi-
cology that brought together researchers from several French 
universities and institutes, namely, CNRS, IFREMER, 
INERIS, INRAE, INSERM and IRSN. This paper proposes 

a synthesis of fruitful ideas and future directions for research 
identified by this expert group with widely diverse skills.

Contributions of adverse outcome pathways 
(AOP)

The succession of biological processes used to build an 
AOP starts with a specific KE called MIE, e.g. inhibition of 
enzymatic activity or DNA fragmentation, which leads to a 
series of biological KE linked by KE relationships (KER). 
Then adverse outcomes (AO) at the apical level are identi-
fied, e.g. impaired reproduction, abnormal individual growth 
or declined population size.

Based on published papers involving AOP approaches, 
some general characteristics appear: (1) an AOP is not spe-
cific to a chemical. It starts with the MIE, meaning that an 
AOP is “stressor-agnostic”; (2) an AOP is modular, made up 
of KE linked together by KER; (3) several AOP that share 
at least one common KE can constitute an adverse outcome 
pathways network (AOPN); (4) a single AOP can be con-
sidered as a unique assessment entity; and (5) AOP are scal-
able and can evolve over time. Figure 1, inspired from the 
conceptualization by Villeneuve et al. (2014), provides a 
schematic representation of an AOP.

An AOP aims to identify and organize available knowledge 
about toxic effects of chemicals and drugs, either in ecotoxi-
cology or toxicology. It can be helpful in both fundamental and 
applied research, as well as to serve as a decision-making tool 
in support of regulatory risk assessment. Since the concept 
has been defined, the Organization for Economic Co-opera-
tion and Development (OECD) supports the development of 
AOP leading to scientific publications and producing guidance 
documents. If suspected to be triggered by a given prototypical 
stressor, e.g. pesticides, pharmaceuticals or other environmen-
tal stressors, the MIE is a crucial trigger that will be under 
in-depth scrutiny for its potential to lead to AO through a par-
ticular sequence of events (Allen et al. 2014). However, the 
conceptual AOP framework remains stressor-agnostic, mean-
ing that the prototypical stressors themselves are not explic-
itly included within the AOP general scheme. As a regulatory 
helping tool, AOP makes it possible to circumvent certain 
limitations inherent to experiments performed with chemical 
substances. In particular, the number of molecules released 
within the environment due to human activities is so huge 
(only 500 over 100,000 chemicals on the market benefit of a 
well-characterized toxicity (ECHA 2017)) that several adverse 
effects, e.g. pathogenicity, metabolic diseases or disrupted neu-
rodevelopment, but also numerous levels of organization and 
endpoints which could be affected by the contaminants, are 
poorly addressed. Moreover, the reduction of animal testing 
required by the OECD is a challenging requirement to ful-
fil, including the need for extrapolation of effects from one 

https://fondationevertea.org/
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species to another. AOP today forms one of the preferred tools 
to be used in integrated approaches to testing and assessment 
(IATA), thus constituting a “weight of evidence” (WoE) sup-
port in the perspective of mechanism-based risk assessment 
(Piva et al. 2011). The WoE is an approach that consists of 
using a combination of information from several independ-
ent sources to give sufficient evidence to fulfil an informa-
tion requirement. In our case, WoE can help to determine the 
robustness and relevance of constitutive elements of an AOP, 
notably KER (Becker et al. 2015). Indeed, AOP can influence 
regulatory decisions (OECD 2018) when a chemical is identi-
fied as an effective prototypical stressor with a given AOP. As 
a proof of this potential support, the OECD launched the AOP 
knowledgebase (AOP-KB; https://​aopkb.​oecd.​org/) in 2014, 
which includes the AOP-Wiki database (https://​aopwi​ki.​org), 
a repository of all AOP (under development or reviewed for 
endorsement). Similarly, AOP are dynamic documents that 
depend on new scientific data and methods, allowing them to 
be updated through collaborative efforts to consolidate avail-
able ecotoxicological/toxicological knowledge relevant for a 
given regulatory challenge.

Besides their regulatory potentialities, AOP could tackle 
another great environmental challenge. Indeed, the develop-
ment of AOP through the use of artificial intelligence (text 
mining in PubMed) can identify unanticipated links between 

AO and certain KE (Jornod et al. 2022; Jaylet et al. 2023, see 
below the focus on an in silico strategy).

Focus on in silico strategy 
for the development of AOP

The research team INSERM T3S recently developed 
an innovative in silico strategy named AOP-helpFinder 
(https://​aop-​helpf​inder.u-​paris-​scien​ces.​fr/) combining 
both text mining and computational biology to build, 
respectively, pre-AOP in a first step and validate them as 
AOP in a second step (Carvaillo et al. 2019; Rugard et al. 
2020; Jornod et al. 2020). This strategy offers new per-
spectives in AOP development and endorsement, notably 
for AOPN. It is based on a text mining approach of the sci-
entific literature in toxicology allowing the identification 
of potential causal links between prototypical stressors and 
AO, thus characterizing KE and then KER. This process 
helps the development of AOP (from MIE to AO, using 
initially prototypical stressors) which can be deposited on 
AOP-Wiki (https://​aopwi​ki.​org/). This strategy has been 
applied to bisphenols (Carvaillo et al. 2019; Rugard et al. 
2020) pesticides (Jornod et al. 2020) and more recently 
ionizing radiation (Jaylet et al. 2022). Bisphenols S and F 

Fig. 1   Schematic representation of an adverse outcome pathway 
(AOP) with a molecular initiating event (MIE) and several key events 
(KE) linked together with key event relationships (KER) leading to an 
adverse outcome (AO). The final line is an example based on the inhi-

bition of aromatase activity: the MIE (decreased aromatase expres-
sion) leads to a sequence of KE which ultimately leads to an AO (dis-
rupted ovarian cycle)

https://aopkb.oecd.org/
https://aopwiki.org
https://aop-helpfinder.u-paris-sciences.fr/
https://aopwiki.org/
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have been, respectively, linked to obesity and breast and 
thyroid malignancies, while ionizing radiation was associ-
ated with microcephaly in humans. To date, this in silico 
strategy has not been applied to ecotoxicology yet.

The in silico strategy described here allows to automati-
cally extract existing information from a large set of data, 
e.g. co-occurrence of groups of terms (biological events 
and stressors), in PubMed abstracts, benefiting of high-
performance methods based on artificial intelligence (such 
as machine learning). Combined with manual curation, the 
related information can be integrated to build AOP frame-
works that require further validation through experimental 
studies. Therefore, this strategy helps to formulate new 
hypotheses for experimental science.

Description of the in silico strategy

Numerous experimental data exist but can be dispersed 
across various data sources, mainly the scientific litera-
ture, e.g. PubMed, and databases, e.g. ToxCast® or Comp-
Tox®. One possibility to gather information from the pub-
lished scientific literature is to manually query specific 
repositories such as the PubMed database and to combine 
results with complementary data from other databases 
such as ToxCast®. A study combining information on 
toxic effects from manual literature searches with infor-
mation from, for example, the ToxCast® and AOP-Wiki 
databases, to establish connections between environmental 
chemicals and toxic effects can be time consuming (Bajard 
et al. 2019), especially if many biological events (MIE, 
KE, AO) are under investigations, and if the number of 
prototypical stressors is high. To overcome this problem, 
the use of artificial intelligence (text mining in PubMed) 
can facilitate the development of AOP and help identify 
unanticipated links between AO and certain KE.

Step 1: identification and integration of existing 
experimental and field data from scientific literature using 
text mining. Building of a pre‑AOP

In this context, a data mining tool, named AOP-helpFinder 
(https://​aop-​helpf​inder.u-​paris-​scien​ces.​fr/), was recently 
developed (Carvaillo et al. 2019; Jornod et al. 2022; Jornod 
et al. 2022 ; Jaylet et al. 2023). It performs a comprehen-
sive analysis of the literature using artificial intelligence and 
machine learning techniques. It combines two approaches, 
“text mining” and “graph theory” (to find the shorter path-
way between two points in a network), to explore the content 
of abstracts of scientific articles, leading to identification 
of possible links (and their strength though a confidence 
score) between prototypical stressors and events, or event-
event linkage, which constitute an AOP, i.e. MIE, KE, KER 

and AO. Concomitantly, co-occurred prototypical stress-
ors and biological events are automatically identified and 
extracted from published abstracts in the PubMed database. 
This tool provided fast and effective results for environmen-
tal substances such as bisphenol S, bisphenol F and a set of 
pesticides, proving its efficiency to propose new AOP or 
to optimize existing ones (Fig. 2). Following this step of 
extraction of biological key events and the identification of 
causal links, a manual inspection of the scientific articles is 
performed to check the reliability of data.

Step 2: integration of data from other sources using system 
biology. Building of an AOP

Following the “text mining” step, the second one consists 
in integrating data from multiple and diverse existing data-
bases, from in vitro to in vivo, e.g. CompTox (https://​compt​
ox.​epa.​gov/), ToxCast (https://​www.​epa.​gov/​chemi​cal-​resea​
rch/​explo​ring-​toxca​st-​data-​downl​oadab​le-​data) or AOP Wiki 
(https://​aopwi​ki.​org/). This step allows to identify new KE 
and KER to integrate to the pre-AOP built from STEP 1 
(Fig. 2). Integration of in vitro and in vivo data is also used 
to predict the relationship between prototypical stressors and 
MIE in an AOP, i.e. which prototypical stressors may elicit 
a molecular target that can initiate an AOP. Besides, the 
development of an AOP is chemically based and relies on 
two different methods: predictions based on chemical struc-
tural properties, e.g. quantitative structure activity relation-
ships (QSAR) for MIE identifications and predictions based 
on experimental data/observed effects, e.g. multi-omics 
responses, for KE and KER identifications.

Integrative system biology‑based predictions

Prediction based on structural properties

Many tools and methods based on chemical structural prop-
erties are used to determine potential chemical functions 
and can be useful to identify elements of an AOP, notably 
the MIE:

One of the first tools developed is databases gathering 
QSAR for both toxicology and ecotoxicology. Such data-
bases provide information about both acute and chronic 
toxicity (Table 1).

Systems biology also includes the use of the “read-
across” method that consists in using relevant information 
from structurally “analogous” substances to predict the 
properties, e.g. acute toxicity or solubility, of “target” sub-
stances. The read-across method is commonly used for fill-
ing data gaps in the regulation, e.g. Registration, Evaluation, 
Authorisation and Restriction of Chemicals (REACH) or 
Biocide Products Regulation (BPR), by allowing to reduce 

https://aop-helpfinder.u-paris-sciences.fr/
https://comptox.epa.gov/
https://comptox.epa.gov/
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
https://aopwiki.org/
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experimental testing. It is also interesting to mention dock-
ing methodology, i.e. prediction of substrate/receptor inter-
action for identification of MIE based on a basic search algo-
rithm tool and an energy scoring function for generating and 
evaluating ligand fixation.

Functional approaches based on observed effect/
experimental data like multi‑omics

Complementary to structural approaches, tools based on 
biological process description, like multi-omics, are also 

Fig. 2   Overview of the global experimental approach used for the in silico strategy

Table 1   Example of chosen databases

Name Description Website

OECD QSAR Toolbox A tool for category formation and read-across that uses 
“profilers” to enable grouping

https://​www.​oecd.​org/​chemi​calsa​fety/​risk-​asses​sment/​oecd-​
qsar-​toolb​ox.​htm

VEGA A tool that provides access to a series of QSAR models 
for predicting toxicity for a range of species (including 
acute toxicity for Daphnia) integrating interspecies and 
intra-species seasonal variations

www.vegahub.eu/

Danish QSAR database The Danish QSAR Database includes more than 200 
QSAR models covering a wide range of hazardous 
properties relevant for human health and the environ-
ment such as acute toxicity to rat, mouse, fish, Daphnia 
and algae, as well as many physical–chemical and 
environmental fate properties, skin irritation, sensitiza-
tion, mutagenicity, cancer and reproductive toxicity 
including potential for endocrine disruption

https://​qsar.​food.​dtu.​dk/

ADMET Predictor: a tool under private licence that estimates many 
properties related to ADME (absorption, distribution, 
metabolism, elimination) and toxicity (including acute 
toxicity for fish and Daphnia)

https://​www.​simul​ations-​plus.​com/​softw​are/​admet​predi​
ctor/

https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm
https://qsar.food.dtu.dk/
https://www.simulations-plus.com/software/admetpredictor/
https://www.simulations-plus.com/software/admetpredictor/
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available to reinforce the construction of the predictive AOP, 
notably regarding the identification of new KE and KER:

Beside databases presented before and predictive 
tools, longitudinal analysis, i.e. from foetal life to adult, 
tools based on multi-omics, on functional validation, are 
powerful to investigate and build the AOP chain elements, 
in particular in exposome-wide association studies. The 
integration of data coming from different omics approaches 
is a key for a system biology approach to gain a full 
understanding of how stressors impact a biological system 
(Brockmeier et al. 2017; Azimzadeh et al. 2022). One of the 
main reasons for that is the high sensitivity and precocity 
of multi-omics data through developmental stages, allowing 
the inference of the AOP chain elements. Multi-omics 
integration, e.g. proteomic, transcriptomic, metabolomic 
or epigenomic approaches, enables (i) to find interactions 
between molecular compounds involved in multiple cell 
functions and signalling pathways, (ii) to rely on WoE 
(Azimzadeh et al. 2022) and (iii) to identify new biomarkers 
allowing the robust identification of novel KE, KER and 
even AO. For example, transcriptomic and proteomic 
approaches were used to enhance the AOP framework 
related to oestrogen interference effect induced by triphenyl 
phosphate, highlighting the link between a MIE (activation 
of G protein-coupled oestrogen receptor) and several AO 
such as abnormal immune function and cancer through 
the activation of several pathways, including PI3 kinase-
Akt signalling pathway or MAPK signalling pathways 
(Guan et al. 2022). In another example, transcriptome and 
epigenome modifications (DNA methylation) collectively 
pointing at developmental defects in neurogenesis and 
muscle development (Murat El Houdigui et  al. 2020) 
supporting the effects of ionizing radiation on zebrafish 
behaviour demonstrated during embryonic development 
(Murat El Houdigui et al. 2019). In Caenorhabditis elegans, 
omics, histological and apical data enabled to show that 
radiation-induced reproductive toxicity was associated 
with multi-scale effects, i.e. germ line, defence systems, 
mitochondrial function and lipid metabolism (Guédon 
et al. 2021 ; Dubois et al. 2019 ; Dufourcq-Sekatcheff et al. 
2021), probably coming from multiple origins (decrease 
in the number of spermatocytes and egg-laying rate) and 
starting from embryogenesis (Dufourcq-Sekatcheff et al. 
2021). These data were used to initiate the construction of 
an AOP “decrease in progeny”, consolidated by the addition 
of the results acquired by European partners, recorded 
in the dedicated OECD database (AOP wiki#396) with 
the prospects of becoming quantitative (dose–response 
modelling, functional validation). Importantly, systems 
toxicology approaches are also emerging in other relevant 
sentinel species, such as the freshwater crustacean 
Gammarus fossarum and contributing in an improved 
knowledge of the molecular physiology and mode of action 

of contaminants in aquatic ecosystems (Degli Esposti et al. 
2019, Koenig et al. 2021).

For more reliability, the use of dose–response modelling 
is highly recommended, e.g. using DRomics (Larras et al. 
2018) or BMDexpress (Yang et al. 2007; Phillips et al. 2019) 
to find the most sensitive biological pathways triggered at 
the lowest dose. In this approach, the use of relationship 
between dose and multi-omics response enables to reinforce 
the biological pathways identified (Larras et al. 2020 ; Song 
et al. 2023).

Together, by combining text mining and system biology, 
the in silico strategy offers many advantages with regards to 
classical building of AOP. First, the abundance and diversity 
of the scientific literature used for data mining and specific 
databases, e.g. in silico, in vitro or in vivo, reinforce the 
power of the methods and its robustness. Furthermore, in 
silico methods allow a rapid exploration and integration 
of these diverse sources, which can become very time-
consuming otherwise. The abundance of sources and 
confronted data also favour the efficient identification of 
data gaps necessary to focus on.

Quantitative AOP: a complementary method

A complementary method would consist in building 
quantitative AOP (qAOP), which is defined by Conolly 
et  al. (2017) as “an AOP for which the quantitative 
understanding of the relationship that underlie transitions 
from one KE to the next, and critical factors that modulate 
those relationships, are sufficiently well defined to allow 
quantitative prediction of the probability or severity of 
the AO for a given level of perturbation of the MIE”. 
For example, a qAOP would be constructed combining 
physiologically based kinetic and dynamic (PBPK-TD) 
models (Tebby et  al. 2019 ; Mit et  al. 2021) with an 
AOP; the information provided by the PBPK-TD models 
would permit to anticipate the distribution/concentration 
of a particular contaminant, which could be compared to 
the affinity of a molecular target identified in one MIE; 
subsequently, this will permit to anticipate when the 
contaminant triggers the MIE (and the cascade of KE in the 
AOP) and leads in the time frame to the AO. Nevertheless, 
there is a crucial need for raw data to create qAOP. 
Some recent studies successfully applied qAOP, such as 
Conolly et  al. (2017), to describe the linkage between 
inhibition of cytochrome P450 19A aromatase (the MIE) 
and population-level decreases in the fathead minnow, or 
Perkins et al. (2019) to illustrate the need for toxicokinetic 
models to provide linkages between exposure and qAOP, 
to extrapolate from in vitro to in vivo and to extrapolate 
across species. Beside these limits, with the integration 
of the temporal and spatial dimension, qAOP models are 
increasingly considered as predictive computational tools, 
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gaining more and more interest due to their potential 
regulatory applications for chemical risk assessment (Spinu 
et al. 2020).

Using in silico strategy described 
in ecotoxicology

The similarities with toxicology and the challenging 
questions in ecotoxicology

One of the main goals of this opinion paper is to look at the 
feasibility of knowledge transfer from toxicology to ecotoxi-
cology using the presented in silico strategy. In other words, 
can we apply this strategy to ecotoxicology and if yes, how?

When compared to toxicology, the use of the in silico 
strategy to build AOP in ecotoxicology raises its own spe-
cific challenges. For example, in toxicology, most studies 
focus on one specific organism, while ecotoxicological stud-
ies mostly focused on ecosystems and several integrated 
populations. Therefore, the challenges appear to be more 
inherent to the nature of the questions related to the field 
itself than to the limitations of the in silico approach. Both 
similarities and potential caveats are summarized in Table 2, 
which is not exhaustive.

The most burning questions we identified are:

•	 What level of organization shall the AO target? Indeed, 
ecotoxicology is a field that address individual, 
population, community and ecosystem levels, while 
toxicology focuses mainly on individual scale. Thus, 
the regulatory questions can be asked at these different 
organizational levels. How to precisely define the AO 
and at which level is an additional difficulty add a layer 
of complexity compared to toxicology. Furthermore, 

to assess population effects, species-specific ethology 
and ecology traits must also be considered, e.g. 
reproductive and escape behaviour or life traits of 
species.

•	 Which database should we use for the construction 
of an AOP in ecotoxicology? Databases, e.g. in vitro 
databases, in ecotoxicology, are less developed than in 
toxicology, and numerous databases in ecotoxicology 
are intern to laboratory and institute.

•	 How to access to these databases? The less abundant 
databases regarding system biology in comparison to 
toxicology are mostly due to the important number of 
model species studied in ecotoxicology. Regarding 
specific databases in ecotoxicology that could be used 
to implement data in a pre-AOP, i.e. Step 2 of the in 
silico strategy, FREDERICA (2008) is a demonstrative 
example. FREDERICA is an online database collecting 
available literature on the biological effects of chronic 
exposure to ionizing radiation. Fish, mammals and 
terrestrial plants are the wildlife groups most widely 
reported, representing all together 70.5% of the 
FREDERICA data for chronic irradiation. Furthermore, 
the Framework for Assessment of Environmental 
Impact (FASSET) project, funded by the European 
Commission (Contract No. FIGE-CT-2000-00102), 
produces other databases than the one for radiation 
effects. Furthermore, recent technologies have 
drastically enriched the current ecotoxicological data 
pool available:

•	 The assessment of genotoxicity by DNA seq (muta-
tion rates, copy number variation)X;

•	 The study of genetic variation and epigenetic modi-
fication using nanopore sequencing coupling;

•	 Nanopore sequencing for environmental DNA to 
study biodiversity.

Table 2   Toxicology vs ecotoxicology (non-exhaustive table)

Similarities with toxicology
The use of interspecies data is possible, even if the development of an AOP is more relevant with a single species
The same frame, methodology and terminology should be used and enables data/knowledge structuration
The identification of data gaps is possible in ecotoxicology as well in toxicology with this strategy
Common intracellular AOP components, e.g. KE or KER, can be found and share in both toxicology and ecotoxicology, such as for oxidative 

stress and DNA damage
Need of harmonization on the ontology used for KE and AO to develop AOPN 

Specificities of ecotoxicology
The scarcity of reliable and exploitable data at environmental scale (population and ecosystem): ecological (predation, density-dependent 

process, …) and environmental factors (e.g. temperature for aquatic organisms) must be considered at the different biological levels, as they 
can mask any chemical effects

Integrate ecotoxicological data from (sentinel) organisms living in their natural habitat
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To meet the challenge of this translation between the 
two disciplines, it is still useful to illustrate its feasibility 
through concrete examples, which is what we discussed 
during evertéa Foundation’s workshop.

Suggested priority topic, i.e. AO to focus on, 
in ecotoxicology that could benefit from data 
mining

The workshop organized by the evertéa Foundation high-
lighted several topics of interest, starting from the AO, for 
which this in silico strategy could be applied:

–	 Reproduction decline
–	 Metabolic (energetic …) disorders
–	 Immune system disorders
–	 Neurotoxicity and behaviour disorders
–	 Growth disorders

Most of these endpoints refer to outcomes that are 
highly prioritized by international consortiums and ongo-
ing Horizon 2020 (H2020) European projects related, for 
example, to endocrine or neuroendocrine disruptions (ED) 
(https://​eurion-​clust​er.​eu; Chauhan et al. 2022). Recently, 
the Horizon Europe has funded a huge initiative, involving 
more than 200 partners, called “the European Partnership 
for the Assessment of Risks from Chemicals (PARC)”. The 
PARC project aims to develop next-generation chemical risk 
assessment to protect human health and the environment. 
One of the PARC priorities is to work on data gaps and new 
approach methodologies (NAMs) development on bisphenol 
A (BPA) alternatives and associated mixtures. They are also 
highly relevant at the ecotoxicological level, e.g. popula-
tion dynamics (Tollefsen et al. 2022), allowing strengthen-
ing of the links between KE in both disciplines (Jaylet et al. 
2022). Moreover, the huge number of abstracts available on 
PubMed related to these ED-linked pathologies made them 
highly relevant for the in silico strategy. Indeed, this strategy 
was applied in toxicology to describe and decipher networks 
of AOP linked to bisphenols (Carvaillo et al. 2019; Rugard 
et al. 2020) and pesticides (Jornod et al. 2020) in particular. 
In theory, there are no methodological obstacles to apply this 
in silico strategy to ecotoxicology.

Due to a lack of time or funding, the research teams in 
ecotoxicology dealing with MoA and/or the study of the 
effects of stressors on main physiological functions (AO) 
do not systematically include the construction of AOP in 
their projects. The integration of this strategy into research 
projects, with the support of the INSERM T3S unit and the 
evertéa Foundation, could overcome this lack of time and 
provide new elements to existing AOP or enable the devel-
opment of new AOP. At the end, the AOP can be useful for 
regulatory decision-making.

Complementary to mechanistic studies, the transposition 
of this approach to ecotoxicology would open new perspec-
tives, such as (1) the construction of AOP literature and 
networks of AOP, (2) the rapid identification of ecotoxico-
logical data available on the effects of a xenobiotic or the 
alteration of a biological pathway, (3) the identification of 
“data gaps”, (4) the identification of new biomarkers, (5) the 
determination of complex and/or controversial mechanisms 
and (6) the identification of common KE that will serve as 
a health indicator at both the toxicological and ecotoxico-
logical level.

General discussion/perspectives

The last COVID-19 crisis has shed the light on how 
anthropic activities affecting ecosystems have dramatic con-
sequences on the health of human populations. The term 
“global health” or “planetary health” is now used, highlight-
ing the need to consider the intricate interaction between 
ecological and human health. For example, one of the under-
lying risks identified by the public is the decrease in pollina-
tor populations, which is already an issue regarding pollina-
tor and associated community diversity and could also lead 
to a dramatic decrease in plant diversity and quantity. This 
decrease in pollinators has multiple causes, including the use 
of pesticides that are lethal for them. People are also becom-
ing aware of soil and water pollution (potentially drinking 
water) with a reflection on the loss of biodiversity.

Predictive toxicology, which was initially designed to 
anticipate the risks associated with chemical molecules 
(many of which being insufficiently characterized in terms 
of toxicity), is a powerful tool, and the development of AOP 
represents a promising tool for this field involving several 
methodologies, e.g. experimental or in silico methods.

The transposition of such methods to the ecotoxicol-
ogy field faces several issues: although those methods will 
face the same problem of research resources as in health 
research, specific challenges inherent to the ecosystem’s 
study research field will be encountered. For instance, one 
of the questions raised in this article is the level of organiza-
tion targeted for AO to be relevant in ecotoxicology. We can 
also anticipate that prioritization of AO will be a key issue in 
the future due to the multiplicity of ecosystem constituents 
(microbiota, plants, animals, fungi).

The temporality will also be a major factor to consider. 
In this context, the in silico strategy opens up the prospect 
of combining two essential approaches to environmental 
chemical stress over the next 10 years: chemical risk and 
long-term observation. Prioritization of AO in a close future 
to target major concerns in terms of environmental risk 
will be a challenge as we could miss important long-term 
consequences that do not appear to be of concern in the 

https://eurion-cluster.eu
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short-term. AO may also need to consider the whole expo-
some, which is the sum of the exposures of one organism 
over her/his lifetime. For an ecosystem, this temporal dimen-
sion will be difficult to define, for example, what period of 
exposure should be addressed?

Moreover, one will not have to consider only chemicals 
prototypical stressors, but physical ones as well. If the loss 
of biodiversity is classically presented in the media being 
associated with the chemical exposome (e.g. pesticide expo-
sure), physical prototypical stressors such as temperature 
(global warming), ionizing and non-ionizing radiation will 
also play an essential role in the prediction of environmen-
tal risks notwithstanding the global rising temperature. It is 
also possible that “social” prototypical stressors will play a 
key role as well, e.g. migration of populations to escape a 
danger. While being non-specific to the AOP, such factors 
will probably need to be considered for the development in 
a near future.

Thus, it appears that together with complementary meth-
ods, the AOP in silico methods could be a great tool to 
address and answer broad questions in the field of ecotoxi-
cology, considering the challenges raised above: the avail-
able databases, the scale of the study and the temporality. 
As for the global health approach, the development of AOP 
in silico is ambitious. However, the AOP appears today as 
an applicable tool in predictive toxicology for environmental 
chemical risk assessment or ecotoxicology for ecosystem 
health assessment.
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